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Chirped self-similar solutions of a generalized nonlinear Schrédinger equation model
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Exact chirped self-similar solutions of the generalized nonlinear Schrédinger equation with varying disper-
sion, nonlinearity, gain or absorption, and nonlinear gain have been found. The stability of these nonlinearly
chirped solutions is then demonstrated numerically by adding Gaussian white noise and by evolving from an
initial chirped Gaussian pulse, respectively. It is reported that the pulse position of these chirped pulses can be
precisely piloted by tailoring the dispersion profile, and that the sech-shaped solitary waves can propagate
stably in the regime oB3(2)y(z) >0 as well as the regime ¢(z)y(z) <0, according to the magnitude of the
nonlinear chirp parameter. Our theoretical predictions are in excellent agreement with the numerical
simulations.
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Self-similarity has become a topic of growing interest inturbations of the additive white noigd3] and by evolving
the description of many complicated phenomena, includingrom an initial chirped Gaussian pulse, respectively. In addi-
the scaling properties of turbulent flow], the formation of  tion to the known properties of self-similar pulsgd], we
fractals in nonlinear systerf2], and the wave collapse in report that the pulse position of our chirped self-similar
hydrodynamicg 3] over the years. It arises after the influ- pulses can be precisely piloted by tailoring the dispersion
ences of initial conditions have faded away, but the system isrofile, and that the sech-shaped solitary waves can propa-
still far from the ultimate state. In the field of nonlinear op- gate stably in the regime g8(2)y(2)>0 as well as the re-
tics, a limited number of self-similar phenomena have bee'@)ime of B(2) ¥(2) <0, where(z) and y(2) denote the corre-

reported. To name a few, the self-similar behaviors in stimu- - . . . . .
lated Raman scatterinf4], the evolution of self-written ?ﬁﬁg%gg group velocity dispersigVD) and nonlinearity

waveguidegS], the formation of Cantor set fractals in ma- The generalized NLS equation with distributed nonlinear

terials that support spatial solitori§], and the nonlinear . . h . £ th ical field |
propagation of pulses in optical fibeg] were investigated. 920 governing the propagation of the optical field in a

Recently, this concept has been extended to an optical fib&ngle-mode optical fiber can be written in the form
amplifier [8] and a laser resonat$®]. In both cases, para-
bolic pulses were shown to propagate self-similarly, and the B2 . 5 5
predicted evolution was verified experimentally. o=~ i@+ 9@y + x@cy, (D)

As is well known, the presence of self-similarity implies
an inherent spatial and/or temporal order that can be ex-
ploited in the mathematical treatment of the governing equawherey(z, 7) is the complex envelope of the electric field in
tions [10]. We especially note that exact self-similar solu-a comoving framez is the propagation distance, is the
tions of the nonlinear SchrodinggNLS) equation with  retarded timeg(z) is the gain function, ang(z) accounts for
distributed coefficients were found by using symmetry re-the nonlinear gain or absorptidi4,15. In the absence of
duction[11]. It is remarkable that these solutions are verythe last term, this equation has exact self-similar solutions or
consistent with the solitary wave or soliton solutions pre-solitonlike solutions that exhibit a linear chifp1,12. These
sented by Serkin and Hasegay#2], by use of another self-similar pulses or solitary waves are rather stable when
methodology. As reported, these self-similar pulses or solipropagating along the distance, remaining localized and pre-
tary waves possess a strictly linear chirp that leads to effiserving their sedB(z)y(z) <0) or tani{3(2)¥(2) > 0) shape,
cient compression or amplification, and thus are particularlywith only a scaling of amplitude and temporal width. But
useful in the design of optical fiber amplifiers, optical pulsehere we are concerned with solutions characterized by a non-
compressors, and solitary wave based communication linknear chirp, resulting from the nonlinear gain.
[8-12. To this end, the complex functiof(z, 7) can be written as

In this paper, we follow the works in Ref§10-12 and
consider the system described by the generalized NLS equa-
tion with varying dispersion, nonlinearity, gain or loss, and
nonlinear gain or absorption. Under certain parametric con-
ditions, exact chirped self-similar solutions are found for thewherem, denotes the nonlinear chirp parameter, &hdnd
first time. In contrast, these sech-shaped pulses exhibit exP are real functions oz and 7. As one might expect, the
plicitly a nonlinear chirp that arises from the nonlinear gain.phase constraint made in ansé®z allows us to find some
By employing numerical simulations, we demonstrate thefamilies of solutions in analytical forifil5,16. It is notewor-
stability of these chirped solutions with respect to finite per-thy that the phasé is assumed to be

Wz, 7) =U(z, )explimg In[U(z,7)] + iP(z,7)}, (2)
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O(z,7)=a(2) + b7~ (D] +c@[7- (2% (3) As a result, foru=1, the functionF(T) in Eqg. (4) can be

o . determined by solving the nonlinear differential equation
where the pulse position, is a function ofz. Subsequently, )

i -simi [ d°F
Egs.(1)—(3) yield a self-similar form of the amplitude O \F+2F%=0, (15)

dT?
_ (T)
U(z7) = V1-2c00) exp(G(2) - me0(2), @ wheredF/dT+0. Then it follows from Eqs(4)—(15) for the
casen=1,” that
where the scaling variabl€ is given by

V(Mg - 2)p(2) 7= 7:+bD(2)
7= 75(2) Uzn=—=¢ ;
= . (5) To\”2[1 - ZCOD(Z)] 7'0[1 - 2COD(Z)]
1-2c,D(2) (16)
The other functiond(z), ©(2), G(2) and 7,(2) in Egs. (4) h 2, +0. andm is the initial bul dth. W
and (5) take the forms where(mg—2)p(2) >0, andr is the ini ial pulse width. We
note that the analog of the so-called kink solitary wave can-
D(2) = z (7)dZ 6) not exist because of the constraihiz, 7) >0 made in ansatz
“Jo B ’ (2) for nonlinear chirp(my # 0). But, for appropriate constant

)\:(Z—KZ)/TS, there exist two bounded periodic solutions
z B(Z) which are proportional to Jacobian elliptic functions
a7z, (7) dn(T/ 7y, k) and ndT/ 7y, k), wherex is an arbitrary param-
o [1-26D(2)] eter in the interval 82 x<1. On the other hand, j&=2, we
can obtain readily from Eq$4)—(14) the homogeneous so-

B(2)=-\

G(2) = 1 In( mg— ZP(O)) . fz o(2)dZ ®) lution (independent of) for arbitrary \(+0),
2l 2 : - 250
Uzn="—F1——, (17)
7(2) = 7= beD(2), © 21~ 2D(2)]
where by, ¢o, N\, and 7, are the integration constants, and wherg)\(mg—Z)p(z)>0. . .
p(=B(/¥(2). In terms of the above functior®)8), the It is further shown that whemy,=0 (linear chirp), our
phase parametes7), b(2), andc(2) in Eq. (3) are found to an_alytlcal solutiong16) and(l?)_ remain valid. Bqt, consid-
be ering the fact that the constraint in ansé®; vamshe_s, the
tanh-shaped solitary wave solution and other cnoidal wave
1+m3 2 my solutions of Eq.(15) come into existence with appropriate
a2 =ap+ > 0(2) - ED(Z) ey Infle(2)]] - mpG(2), constants\ [11]. By the same token, E¢17) also becomes

valid for A=0. On the other hand, we note that the trivial
solution ¢z, 7)=0 is always in existence, independent of all
related parameters. ihy=0, such a trivial solution can fol-
b(2) = by, (1D ow easily from Eq.(17) with A=0. If my#0, we cannot
obtain this trivial solution from Eq(16) or (17) directly, but
we haveU(z,7)—0, asm§—>2. It states that the trivial solu-
tion is the limit case of our nonlinearly chirped solutions.
Next, we wish to cite an example illustrative of some
scinating features of our chirped solutiét6) by consid-
ering the system in which the GVD and the nonlinearity are
distributed according t912]

gn=-—9 Cof2) __ _pAmeS(2) (@)= pocodor), Y2 =ycodod), (18

(10)

Co
c=——7"7—. 12
@ 1-2c,D(2) (12
It should be emphasized that the existence of such selfra
similar solutions is conditional on the following two formu-
las:

p(2) + 5
2p(2) dz 1-26D(@  [1~2cD(2)] where By, v, and o(#0) are arbitrary constants. In this in-
(13) stance, the corresponding gain and nonlinear gain functions
given by Egs.(13) and(14) read
% = 32m(,2’ (14 @)= ov cod02) MoBo €0 02) 19
Y Mo gz 2 - 2vsin(oz) 7%[1 -vsin(oz)]?’
where £=1 or 2. The former condition describes that the
four parameter functions in Eql) cannot be chosen inde- 3Myyo
pendently. The latter implies that the nonlinear chirp param- x(2) = codo2), (20

2
etermy is in fact determined by the ratig(z)/ y(z). In our Mo =2
analytical work, it requires that the ratio is a constant. Fromwhere the parameter=2cyBq/0 (|v|<1) has been intro-
the physical point of view, we come to the conclusion thatduced for brevity. Hence the amplitude of the solitary wave
mS# 2 for arbitrary nonlinear materials. solution given by Eq(16) reduces to
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FIG. 1. Evolution of an initial nonlinearly chirped pulse
#0,7=[(1/v2)sechin]* exp (i57+i0.017) in the regime of
B(2)v(z) <0. The insets compare our analytical res(®$) (in unit
of W2 and(22) (in unit of TH2) atz=1000 m(solid line) with the
numerical simulationgcircles as well as with the initial distribu-
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where p(0)=By/ vo, W(2)=7[1-vsin(oz)], and the pulse
position 7, varies with 7,=7.~(byB,/ o)sin(cz) that has a
period 27/o in distance. The resultant chirp consisting of  FIG. 2. Evolution of an initial pulse that i&) the same as in

linear and nonlinear contributions can be derived&s Fig. 1 except for considering the finite perturbations of the additive
white noise with noise intensity of 1:0107® W/mz, and (b) a
s0(7) Mo t %‘(T_ Tp) 2007-0( ) @2 chirped Gaussian pulse Tlg(o,r)=(1/€2)exp(—0.572)
= an —Dp— T Tp). i / i i i i
(T, W(2) W(2) o W(2) P xexp{i In[(1/V2) sech(7)]+i57+i0.017°}, in the regime of

B(2)y(2) <0. The insets compare the res(#@tl) with the numerical

. . . ) simulations, the same as in Fig. 1.
As seen, the first term in E¢R2) denotes the nonlinear chirp g

that results from the nonlinear gain, while the last two termsFigs. 2a) and 2b). It is found that these chirped pulses are
account for the linear chirp. It is obvious that the phase chirgrather stable and propagate self-similarly.

(at bp=0) is an odd function of 7—7,)/W(2), which varies We proceed now to consider another situation that de-
monotonically (myco<0) or nonmonotonically(mycy>0), scribesB(z)y(z) >0. From Eq.(16) it is readily concluded
depending on the initial combinations of, and c,,. that m§> 2. Therefore, for our present purposes, the initial

These analytical predictions have been confirmed by nuparameters are given hyy,=-2, by=0, ¢;=0.05, 7p=1 ps,
merical simulations of the underlying equati@h) by using  3,=0.01 pg/m, 1,=0.01 W'/m, and ¢=0.005. We have
the split-step Fourier codd.3]. Figure 1 shows the evolution found that the hyperbolic secant pulses can propagate stably
of an initial pulse along the fiber with the distributed param-in such a regime as welkee Fig. 3. This scenario contrasts
eters given by Eqe(18—(20). The insets compare our ana- sharply with that reported in Ref11], where only a kink-
lytical results(21) and (22) with the numerical simulations. type solitary wave is maintained in this regime. It is also
In these simulations, we have consider the typical situatiomlifferent from that observed in Refl4], where the spa-
B(2) y(2) <0. The amplifier parameters are therefore given bytiotemporal bright soliton behaves instably in a normally dis-
Bo=-0.01 pd/m andy,=0.01 W1/m. The input pulse has persive planar waveguide. This newly found phenomenon
an initial width =1 ps and energy of 1 pJ. The other initial would have important implications in the study of solitary
parameters used am=1, by=5,¢c,=0.01, andr=0.02. Itis  wave propagations in optical fibers.
remarkable that the pulse position of our chirped self-similar Theoretically, by constructing the appropriate profiles of
pulses varies periodically as has been expected, and our argain g(z) and nonlinear gainy(z), a solitary wave can be
lytical results(21) and (22) are in excellent agreement with  made even smallgtargen, but well-maintained in intensity,
the numerical simulations, as stated in insets. Moreover, it ithan desired when propagating in a nonlinear medium with
noted that the chirp varies nonmonotonically with as  given dispersion and nonlinearity, corresponding to making
mMyCo=>0. We have also performed numerical simulations t0m§ close to(far from) 2. These predictions have been con-
demonstrate the stability of these nonlinearly chirped pulsefirmed by our numerical simulations. Yet, experimentally, to
by adding Gaussian white noi$&3] and by evolving from date, it might not be easy to maintain such nonlinearly
an initial chirped Gaussian pulse, respectively, as shown ighirped pulses due to the possible technical problems, e.g.,
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8]

or amplified under certain parametric conditions, as stated in
Ref. [11]. The other simulations indicate the sensitivity of
these chirped pulses to parametgr For example, the evo-
lution becomes less stable &g becomes far larger than 2,

Amplitude
o
(=]

o
=]

& and the negative value ofy is more immune from the per-
%1'2 turbations than its positive value of the same absolute mag-
% nitude, with everything else unchanged.

gos In conclusion, we would like to point out that our analyti-
? cal results are a natural but significant generalization of those
<

made in Refs[10-12, by considering the nonlinear gain. As
such these results can readily be applicable to compressing
or spreading solitary pulses that maintain a linear chirp. Be-
sides, our results exhibit two other important features. First,
the pulse position of these chirped pulses can be precisely

: i : piloted by tailoring the dispersion profil6(z). The second
fﬁ?ﬁ:r;e;igglr ;ﬁ?’;’;ﬁ:&;?j‘églégt/vze:”?’:g?lvmﬁggﬂn':gg)l g:thn and more interesting aspect lies in the possibilities of bright
bution (dotted ling solitary wave propagations in the regime B€z)y(z) >0,

' according to the magnitude of parametey. These analyti-

. _ . cal findings suggest potential applications in areas such as
the profiles ofg(z) andx(2) are in general too complicated to giical fiber compressors, optical fiber amplifiers, nonlinear

be correctly engineered in practice. This is a subject of futurgptical switches, and optical communications.
investigation.

In addition, by simulating the system that involves expo- This research was partially supported by the Provincial
nentially distributed dispersion and nonlinearity, it is clearly Natural Science Foundation of Hubei, Grant No.
seen that our nonlinearly chirped pulses can be compress@f03ABA004.
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FIG. 3. Evolution of an initial chirped pulsey(0,7)
=[seclir)]* 2 exp(i0.057) in the regime of3(2) y(2) >0. The inset
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