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Exact chirped self-similar solutions of the generalized nonlinear Schrödinger equation with varying disper-
sion, nonlinearity, gain or absorption, and nonlinear gain have been found. The stability of these nonlinearly
chirped solutions is then demonstrated numerically by adding Gaussian white noise and by evolving from an
initial chirped Gaussian pulse, respectively. It is reported that the pulse position of these chirped pulses can be
precisely piloted by tailoring the dispersion profile, and that the sech-shaped solitary waves can propagate
stably in the regime ofbszdgszd.0 as well as the regime ofbszdgszd,0, according to the magnitude of the
nonlinear chirp parameter. Our theoretical predictions are in excellent agreement with the numerical
simulations.
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Self-similarity has become a topic of growing interest in
the description of many complicated phenomena, including
the scaling properties of turbulent flowf1g, the formation of
fractals in nonlinear systemf2g, and the wave collapse in
hydrodynamicsf3g over the years. It arises after the influ-
ences of initial conditions have faded away, but the system is
still far from the ultimate state. In the field of nonlinear op-
tics, a limited number of self-similar phenomena have been
reported. To name a few, the self-similar behaviors in stimu-
lated Raman scatteringf4g, the evolution of self-written
waveguidesf5g, the formation of Cantor set fractals in ma-
terials that support spatial solitonsf6g, and the nonlinear
propagation of pulses in optical fibersf7g were investigated.
Recently, this concept has been extended to an optical fiber
amplifier f8g and a laser resonatorf9g. In both cases, para-
bolic pulses were shown to propagate self-similarly, and the
predicted evolution was verified experimentally.

As is well known, the presence of self-similarity implies
an inherent spatial and/or temporal order that can be ex-
ploited in the mathematical treatment of the governing equa-
tions f10g. We especially note that exact self-similar solu-
tions of the nonlinear SchrödingersNLSd equation with
distributed coefficients were found by using symmetry re-
duction f11g. It is remarkable that these solutions are very
consistent with the solitary wave or soliton solutions pre-
sented by Serkin and Hasegawaf12g, by use of another
methodology. As reported, these self-similar pulses or soli-
tary waves possess a strictly linear chirp that leads to effi-
cient compression or amplification, and thus are particularly
useful in the design of optical fiber amplifiers, optical pulse
compressors, and solitary wave based communication links
f8–12g.

In this paper, we follow the works in Refs.f10–12g and
consider the system described by the generalized NLS equa-
tion with varying dispersion, nonlinearity, gain or loss, and
nonlinear gain or absorption. Under certain parametric con-
ditions, exact chirped self-similar solutions are found for the
first time. In contrast, these sech-shaped pulses exhibit ex-
plicitly a nonlinear chirp that arises from the nonlinear gain.
By employing numerical simulations, we demonstrate the
stability of these chirped solutions with respect to finite per-

turbations of the additive white noisef13g and by evolving
from an initial chirped Gaussian pulse, respectively. In addi-
tion to the known properties of self-similar pulsesf11g, we
report that the pulse position of our chirped self-similar
pulses can be precisely piloted by tailoring the dispersion
profile, and that the sech-shaped solitary waves can propa-
gate stably in the regime ofbszdgszd.0 as well as the re-
gime of bszdgszd,0, wherebszd andgszd denote the corre-
sponding group velocity dispersionsGVDd and nonlinearity
functions.

The generalized NLS equation with distributed nonlinear
gain governing the propagation of the optical field in a
single-mode optical fiber can be written in the form

cz = − i
bszd

2
ctt + igszducu2c + gszdc + xszducu2c, s1d

wherecsz,td is the complex envelope of the electric field in
a comoving frame,z is the propagation distance,t is the
retarded time,gszd is the gain function, andxszd accounts for
the nonlinear gain or absorptionf14,15g. In the absence of
the last term, this equation has exact self-similar solutions or
solitonlike solutions that exhibit a linear chirpf11,12g. These
self-similar pulses or solitary waves are rather stable when
propagating along the distance, remaining localized and pre-
serving their sechsbszdgszd,0d or tanhsbszdgszd.0d shape,
with only a scaling of amplitude and temporal width. But
here we are concerned with solutions characterized by a non-
linear chirp, resulting from the nonlinear gain.

To this end, the complex functioncsz,td can be written as

csz,td = Usz,tdexphim0 lnfUsz,tdg + iFsz,tdj, s2d

wherem0 denotes the nonlinear chirp parameter, andU and
F are real functions ofz and t. As one might expect, the
phase constraint made in ansatzs2d allows us to find some
families of solutions in analytical formf15,16g. It is notewor-
thy that the phaseF is assumed to be
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Fsz,td = aszd + bszdft − tpszdg + cszdft − tpszdg2, s3d

where the pulse positiontp is a function ofz. Subsequently,
Eqs.s1d–s3d yield a self-similar form of the amplitude

Usz,td =
FsTd

Î1 − 2c0Dszd
exp„Gszd − m0Qszd…, s4d

where the scaling variableT is given by

T =
t − tpszd

1 − 2c0Dszd
. s5d

The other functionsDszd, Qszd, Gszd and tpszd in Eqs. s4d
and s5d take the forms

Dszd =E
0

z

bsz8ddz8, s6d

Qszd = − lE
0

z bsz8d
f1 − 2c0Dsz8dg2dz8, s7d

Gszd =
1

2
lnSm0

2 − 2

2
rs0dD +E

0

z

gsz8ddz8, s8d

tpszd = tc − b0Dszd, s9d

where b0, c0, l, and tc are the integration constants, and
rszd=bszd /gszd. In terms of the above functionss6d–s8d, the
phase parametersaszd, bszd, andcszd in Eq. s3d are found to
be

aszd = a0 +
1 + m0

2

2
Qszd −

b0
2

2
Dszd −

m0

2
lnfucszdug − m0Gszd,

s10d

bszd = b0, s11d

cszd =
c0

1 − 2c0Dszd
. s12d

It should be emphasized that the existence of such self-
similar solutions is conditional on the following two formu-
las:

gszd =
1

2rszd
d

dz
rszd +

c0bszd
1 − 2c0Dszd

−
mlm0bszd

f1 − 2c0Dszdg2 ,

s13d

xszd
gszd

=
3m0

m0
2 − 2

, s14d

where m=1 or 3
4. The former condition describes that the

four parameter functions in Eq.s1d cannot be chosen inde-
pendently. The latter implies that the nonlinear chirp param-
eter m0 is in fact determined by the ratioxszd /gszd. In our
analytical work, it requires that the ratio is a constant. From
the physical point of view, we come to the conclusion that
m0

2Þ2 for arbitrary nonlinear materials.

As a result, form=1, the functionFsTd in Eq. s4d can be
determined by solving the nonlinear differential equation

d2F

dT2 − lF + 2F3 = 0, s15d

wheredF/dTÞ0. Then it follows from Eqs.s4d–s15d for the
casel=t0

−2 that

Usz,td =
Îsm0

2 − 2drszd

t0
Î2f1 − 2c0Dszdg

sechS t − tc + b0Dszd
t0f1 − 2c0DszdgD ,

s16d

wheresm0
2−2drszd.0, andt0 is the initial pulse width. We

note that the analog of the so-called kink solitary wave can-
not exist because of the constraintUsz,td.0 made in ansatz
s2d for nonlinear chirpsm0Þ0d. But, for appropriate constant
l=s2−k2d /t0

2, there exist two bounded periodic solutions
which are proportional to Jacobian elliptic functions
dnsT/t0,kd and ndsT/t0,kd, wherek is an arbitrary param-
eter in the interval 0,k,1. On the other hand, ifm= 3

4, we
can obtain readily from Eqs.s4d–s14d the homogeneous so-
lution sindependent oftd for arbitrarylsÞ0d,

Usz,td =
Îlsm0

2 − 2drszd
2f1 − 2c0Dszdg

, s17d

wherelsm0
2−2drszd.0.

It is further shown that whenm0=0 slinear chirpd, our
analytical solutionss16d and s17d remain valid. But, consid-
ering the fact that the constraint in ansatzs2d vanishes, the
tanh-shaped solitary wave solution and other cnoidal wave
solutions of Eq.s15d come into existence with appropriate
constantsl f11g. By the same token, Eq.s17d also becomes
valid for l=0. On the other hand, we note that the trivial
solutioncsz,td=0 is always in existence, independent of all
related parameters. Ifm0=0, such a trivial solution can fol-
low easily from Eq.s17d with l=0. If m0Þ0, we cannot
obtain this trivial solution from Eq.s16d or s17d directly, but
we haveUsz,td→0, asm0

2→2. It states that the trivial solu-
tion is the limit case of our nonlinearly chirped solutions.

Next, we wish to cite an example illustrative of some
fascinating features of our chirped solutions16d by consid-
ering the system in which the GVD and the nonlinearity are
distributed according tof12g

bszd = b0 cossszd, gszd = g0 cossszd, s18d

whereb0, g0, andssÞ0d are arbitrary constants. In this in-
stance, the corresponding gain and nonlinear gain functions
given by Eqs.s13d and s14d read

gszd =
sn cossszd

2 − 2n sinsszd
−

m0b0 cossszd
t0

2f1 − n sinsszdg2 , s19d

xszd =
3m0g0

m0
2 − 2

cossszd, s20d

where the parametern=2c0b0/s sunu,1d has been intro-
duced for brevity. Hence the amplitude of the solitary wave
solution given by Eq.s16d reduces to
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Usz,td =
Îsm0

2 − 2drs0d
Î2Wszd

sechS t − tp

Wszd
D , s21d

where rs0d=b0/g0, Wszd=t0f1−n sinsszdg, and the pulse
position tp varies with tp=tc−sb0b0/sdsinsszd that has a
period 2p /s in distance. The resultant chirp consisting of
linear and nonlinear contributions can be derived asf8g

dvstd =
m0

Wszd
tanhS t − tp

Wszd
D − b0 −

2c0t0

Wszd
st − tpd. s22d

As seen, the first term in Eq.s22d denotes the nonlinear chirp
that results from the nonlinear gain, while the last two terms
account for the linear chirp. It is obvious that the phase chirp
sat b0=0d is an odd function ofst−tpd /Wszd, which varies
monotonically sm0c0,0d or nonmonotonicallysm0c0.0d,
depending on the initial combinations ofm0 andc0.

These analytical predictions have been confirmed by nu-
merical simulations of the underlying equations1d by using
the split-step Fourier codef13g. Figure 1 shows the evolution
of an initial pulse along the fiber with the distributed param-
eters given by Eqs.s18d–s20d. The insets compare our ana-
lytical resultss21d and s22d with the numerical simulations.
In these simulations, we have consider the typical situation
bszdgszd,0. The amplifier parameters are therefore given by
b0=−0.01 ps2/m andg0=0.01 W−1/m. The input pulse has
an initial widtht0=1 ps and energy of 1 pJ. The other initial
parameters used arem0=1, b0=5, c0=0.01, ands=0.02. It is
remarkable that the pulse position of our chirped self-similar
pulses varies periodically as has been expected, and our ana-
lytical resultss21d and s22d are in excellent agreement with
the numerical simulations, as stated in insets. Moreover, it is
noted that the chirp varies nonmonotonically witht, as
m0c0.0. We have also performed numerical simulations to
demonstrate the stability of these nonlinearly chirped pulses
by adding Gaussian white noisef13g and by evolving from
an initial chirped Gaussian pulse, respectively, as shown in

Figs. 2sad and 2sbd. It is found that these chirped pulses are
rather stable and propagate self-similarly.

We proceed now to consider another situation that de-
scribesbszdgszd.0. From Eq.s16d it is readily concluded
that m0

2.2. Therefore, for our present purposes, the initial
parameters are given bym0=−2, b0=0, c0=0.05, t0=1 ps,
b0=0.01 ps2/m, g0=0.01 W−1/m, and s=0.005. We have
found that the hyperbolic secant pulses can propagate stably
in such a regime as wellssee Fig. 3d. This scenario contrasts
sharply with that reported in Ref.f11g, where only a kink-
type solitary wave is maintained in this regime. It is also
different from that observed in Ref.f14g, where the spa-
tiotemporal bright soliton behaves instably in a normally dis-
persive planar waveguide. This newly found phenomenon
would have important implications in the study of solitary
wave propagations in optical fibers.

Theoretically, by constructing the appropriate profiles of
gain gszd and nonlinear gainxszd, a solitary wave can be
made even smallerslargerd, but well-maintained in intensity,
than desired when propagating in a nonlinear medium with
given dispersion and nonlinearity, corresponding to making
m0

2 close tosfar fromd 2. These predictions have been con-
firmed by our numerical simulations. Yet, experimentally, to
date, it might not be easy to maintain such nonlinearly
chirped pulses due to the possible technical problems, e.g.,

FIG. 1. Evolution of an initial nonlinearly chirped pulse
cs0,td=fs1/Î2dsechstdg1+i exp si5t+i0.01t2d in the regime of
bszdgszd,0. The insets compare our analytical resultss21d sin unit
of W1/2d ands22d sin unit of THzd at z=1000 mssolid lined with the
numerical simulationsscirclesd as well as with the initial distribu-
tion in amplitudesdotted lined.

FIG. 2. Evolution of an initial pulse that issad the same as in
Fig. 1 except for considering the finite perturbations of the additive
white noise with noise intensity of 1.0310−8 W/m2, and sbd a
chirped Gaussian pulse cs0,td=s1/Î2dexps−0.5t2d
3exphi lnfs1/Î2d sechstdg+ i5t+ i0.01t2j, in the regime of
bszdgszd,0. The insets compare the results21d with the numerical
simulations, the same as in Fig. 1.
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the profiles ofgszd andxszd are in general too complicated to
be correctly engineered in practice. This is a subject of future
investigation.

In addition, by simulating the system that involves expo-
nentially distributed dispersion and nonlinearity, it is clearly
seen that our nonlinearly chirped pulses can be compressed

or amplified under certain parametric conditions, as stated in
Ref. f11g. The other simulations indicate the sensitivity of
these chirped pulses to parameterm0. For example, the evo-
lution becomes less stable asm0

2 becomes far larger than 2,
and the negative value ofm0 is more immune from the per-
turbations than its positive value of the same absolute mag-
nitude, with everything else unchanged.

In conclusion, we would like to point out that our analyti-
cal results are a natural but significant generalization of those
made in Refs.f10–12g, by considering the nonlinear gain. As
such these results can readily be applicable to compressing
or spreading solitary pulses that maintain a linear chirp. Be-
sides, our results exhibit two other important features. First,
the pulse position of these chirped pulses can be precisely
piloted by tailoring the dispersion profilebszd. The second
and more interesting aspect lies in the possibilities of bright
solitary wave propagations in the regime ofbszdgszd.0,
according to the magnitude of parameterm0. These analyti-
cal findings suggest potential applications in areas such as
optical fiber compressors, optical fiber amplifiers, nonlinear
optical switches, and optical communications.
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FIG. 3. Evolution of an initial chirped pulsecs0,td
=fsechstdg1−2i expsi0.05t2d in the regime ofbszdgszd.0. The inset
compares our analytical results21d at z=3000 m ssolid lined with
the numerical simulationscirclesd as well as with the initial distri-
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